Homework 7

1. Show that each of the following sequences of functions converge pointwise on the given domain. Also, find the limit function.
(a) $f_{n}(x)=x^{n}$ for $x \in[0,1]$.
(b) $f_{n}(x)=\frac{x}{n}$ for $x \in \mathbb{R}$.
(c) $f_{n}(x)=\frac{\sin n x}{\sqrt{n}}$ for $x \in \mathbb{R}$.
(d) $f_{n}(x)=n^{2} x\left(1-x^{2}\right)^{n}$ for $x \in[0,1]$.
(e) $f_{n}(x)=\left\{\begin{array}{ll}1, & -n \leq x \leq n \\ 0, & \text { otherwise }\end{array}\right.$, for $x \in \mathbb{R}$.
2. Check for uniform convergence of sequences described in Question 1.
3. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
4. If $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ converge uniformly on E, prove that $\left\{f_{n}+g_{n}\right\}$ converges uniformly on E. If, in addition, $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are sequences of bounded functions, then prove that $\left\{f_{n} g_{n}\right\}$ converges uniformly on E.
5. Construct sequences $\left\{f_{n}\right\},\left\{g_{n}\right\}$ which converge uniformly on some set E, but such that $\left\{f_{n} g_{n}\right\}$ does not converge uniformly on E.
6. Show that the series

$$
\sum_{n=1}^{\infty} \frac{1}{1+n^{2} x}
$$

(a) converges for each $x>0$,
(b) converges uniformly on any interval of the form $[a, b]$ with $a>0$.
7. Show that the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2}+n}{n^{2}}
$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of x.
8. For $n \in \mathbb{N}$ and $x \in \mathbb{R}$, consider

$$
f_{n}(x)=\frac{x}{1+n x^{2}} .
$$

Show that $\left\{f_{n}\right\}$ converges uniformly to a function f, and that the equation

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)
$$

holds true if $x \neq 0$, but false if $x=0$.

MTH 303 Homework 8 (Continued)

9. Let $\left\{f_{n}\right\}$ be a sequence of continuous functions which converges uniformly to a function f on a set E. Prove that

$$
\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)
$$

for every sequence $\left\{x _n\right\}$ in E such that $x_{n} \rightarrow x$ and $x \in E$. Is the converse of this true?
10. For a real-valued continuous function f on \mathbb{R}, define $f_{n}(x)=f(n x), n \in \mathbb{N}$. Assume that the sequence $\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$, then prove that f is constant.
11. For $n \in \mathbb{N}$ and $x \in[0,1]$, consider

$$
f_{n}(x)=\frac{x^{2}}{x^{2}+(1-n x)^{2}}
$$

Show that
(a) $\left\{f_{n}\right\}$ is uniformly bounded on $[0,1]$.
(b) No subsequence of $\left\{f_{n}\right\}$ can converge uniformly on $[0,1]$.
(c) $\left\{f_{n}\right\}$ is not equicontinuous on $[0,1]$.
12. Let $\left\{f_{n}\right\}$ be a uniformly bounded sequence of functions which are Riemann integrable on $[a, b]$. Define

$$
F_{n}(x)=\int_{a}^{x} f_{n}(t) d t, \quad a \leq x \leq b
$$

Show that
(a) Show that $\left\{F_{n}\right\}$ is equicontinuous on $[a, b]$.
(b) Show that $\left\{F_{n}\right\}$ has a subsequence which is uniformly convergent on $[a, b]$.
13. Show that there exists a sequence of polynomial P_{n} with $P_{n}(0)=0$ such that $P_{n}(x) \rightarrow|x|$ uniformly on $[-1,1]$.
14. If f is a continuous function $[0,1]$ and if

$$
\int_{0}^{1} f(x) x^{n} d x=0, \text { for each } n \in \mathbb{N}
$$

show that $f(x)=0$ on $[0,1]$.

