MTH 303 Real analysis

Homework 7

- 1. Show that each of the following sequences of functions converge pointwise on the given domain. Also, find the limit function.
 - (a) $f_n(x) = x^n$ for $x \in [0, 1]$.
 - (b) $f_n(x) = \frac{x}{n}$ for $x \in \mathbb{R}$.
 - (c) $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ for $x \in \mathbb{R}$.

(d)
$$f_n(x) = n^2 x (1 - x^2)^n$$
 for $x \in [0, 1]$.

(e)
$$f_n(x) = \begin{cases} 1, & -n \le x \le n \\ 0, & \text{otherwise} \end{cases}$$
, for $x \in \mathbb{R}$

- 2. Check for uniform convergence of sequences described in Question 1.
- 3. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 4. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on E, prove that $\{f_n + g_n\}$ converges uniformly on E. If, in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, then prove that $\{f_ng_n\}$ converges uniformly on E.
- 5. Construct sequences $\{f_n\}, \{g_n\}$ which converge uniformly on some set E, but such that $\{f_ng_n\}$ does not converge uniformly on E.
- 6. Show that the series

$$\sum_{n=1}^{\infty} \frac{1}{1+n^2x}$$

- (a) converges for each x > 0,
- (b) converges uniformly on any interval of the form [a, b] with a > 0.
- 7. Show that the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

8. For $n \in \mathbb{N}$ and $x \in \mathbb{R}$, consider

$$f_n(x) = \frac{x}{1 + nx^2}$$

Show that $\{f_n\}$ converges uniformly to a function f, and that the equation

$$f'(x) = \lim_{n \to \infty} f'_n(x)$$

holds true if $x \neq 0$, but false if x = 0.

MTH 303 Homework 8 (Continued)

9. Let $\{f_n\}$ be a sequence of continuous functions which converges uniformly to a function f on a set E. Prove that

$$\lim_{n \to \infty} f_n(x_n) = f(x)$$

for every sequence $\{x_n\}$ in E such that $x_n \to x$ and $x \in E$. Is the converse of this true?

- 10. For a real-valued continuous function f on \mathbb{R} , define $f_n(x) = f(nx)$, $n \in \mathbb{N}$. Assume that the sequence $\{f_n\}$ is equicontinuous on [0, 1], then prove that f is constant.
- 11. For $n \in \mathbb{N}$ and $x \in [0, 1]$, consider

$$f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}$$

Show that

- (a) $\{f_n\}$ is uniformly bounded on [0, 1].
- (b) No subsequence of $\{f_n\}$ can converge uniformly on [0, 1].
- (c) $\{f_n\}$ is not equicontinuous on [0, 1].
- 12. Let $\{f_n\}$ be a uniformly bounded sequence of functions which are Riemann integrable on [a, b]. Define

$$F_n(x) = \int_a^x f_n(t)dt, \quad a \le x \le b.$$

Show that

- (a) Show that $\{F_n\}$ is equicontinuous on [a, b].
- (b) Show that $\{F_n\}$ has a subsequence which is uniformly convergent on [a, b].
- 13. Show that there exists a sequence of polynomial P_n with $P_n(0) = 0$ such that $P_n(x) \to |x|$ uniformly on [-1, 1].
- 14. If f is a continuous function [0, 1] and if

$$\int_0^1 f(x)x^n dx = 0, \text{ for each } n \in \mathbb{N},$$

show that f(x) = 0 on [0, 1].